ANDREAS HOLZINGER – FIVE PUBLICATIONS AND WHY THEY ARE RELEVANT The interactive machine learning concept and four experimental proofs-of-concept

Concept Paper #1: Andreas Holzinger 2016.	This is the concept paper behind the interactive
Interactive Machine Learning for Health	machine learning approach; along with it there
Informatics: When do we need the human-in-the-	are four proof-of-concepts. Since its release two
loop? Springer/Nature Brain Informatics, 3, 2,	years ago it received 145 citations and 15,000
119-131, doi:10.1007/s40708-016-0042-6.	downloads! The topic was selected as "Aktuelles
https://link.springer.com/article/10.1007/s40708-016-0042-6	Schlagwort ¹ " by the GI
Proof-of-concept #2: Michael Hund, Dominic	In machine learning we are often confronted with
Boehm, Werner Sturm, Michael Sedlmair,	data in arbitrarily high dimensional spaces and
Tobias Schreck, Torsten Ullrich, Daniel A. Keim,	we must map it down to dimensions perceivable
Ljiljana Majnaric & Andreas Holzinger 2016.	to the human. Irrelevant, redundant, and
Visual analytics for concept exploration in	conflicting dimensions can negatively affect
subspaces of patient groups: Making sense of	effectiveness and efficiency of the analytic
complex datasets with the Doctor-in-the-loop.	process (curse of dimensionality). In this paper
Springer/Nature Brain Informatics, 3, 4, 233-247,	we present a new method to visually explore
doi:10.1007/s40708-016-0043-5.	subspace clusters from different perspectives and
https://link.springer.com/article/10.1007/s40708-016-0043-5	introduce a novel analysis workflow.
Proof-of-concept #3: Peter Kieseberg, Bernd	While the interactive machine learning approach
Malle, Peter Fruehwirt, Edgar Weippl &	can be beneficial for solving various problems in
Andreas Holzinger 2016. A tamper-proof audit	different domains, it relies heavily on the
and control system for the doctor in the loop.	authenticity of the data, thus there is urgent need
Springer/Nature Brain Informatics, 3, 4, 269–	for secure and reliable databases. Here, we
279, doi:10.1007/s40708-016-0046-2.	provide a novel solution to protect a doctor in
https://link.springer.com/article/10.1007%2Fs40708-016-0046-2	the loop against manipulated data.
Proof-of-concept #4: Seid Muhie Yimam, Chris	In three experiments we explore the annotation
Biemann, Ljiljana Majnaric, Šefket Šabanović &	of semantic relations with relation instance
Andreas Holzinger 2016. An adaptive	learning across documents. Our experiments
annotation approach for biomedical entity and	validated the interactive machine learning
relation recognition. Brain Informatics, 3, (3),	method both qualitatively and quantitatively,
157-168, doi:10.1007/s40708-016-0036-4.	and give rise to a personalized, responsive
https://link.springer.com/article/10.1007%2Fs40708-016-0036-4	information extraction technology.
Proof-of-concept #5: Andreas Holzinger,	Here we show on a gamification experiment how
Markus Plass, Katharina Holzinger, Gloria	to open a black box, thus enabling a human
Cerasela Crisan, Camelia-M. Pintea & Vasile	directly and indirectly interacting with an
Palade 2016. Towards interactive Machine	algorithm. We selected the Ant Colony
Learning: Applying Ant Colony Algorithms to	Optimization (ACO) framework and use it on the
solve the Traveling Salesman Problem with the	Traveling Salesman Problem (TSP) which is of
Human-in-the-Loop approach. Springer Lecture	high importance in solving many practical
Notes in Computer Science LNCS 9817.	problems in practice, e.g. in health informatics, in
Heidelberg, Berlin, New York: Springer, pp. 81-	the study of proteins. I have a good track record
95, doi:10.1007/978-3-319-45507-56.	in gamification ² , e.g. my first gamification paper
https://link.springer.com/chapter/10.1007/978-3-319-45507-5_6	received 606 citations!

¹ Andreas Holzinger 2016. Interactive Machine Learning (iML). Informatik Spektrum, 39, (1), 64-68, doi:10.1007/s00287-015-0941-6.

² <u>https://hci-kdd.org/gamification-interactive-machine-learning</u>