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Why imaging data alone is not enough: AI-based integration
of imaging, omics, and clinical data

Andreas Holzinger1 · Benjamin Haibe-Kains2,3 · Igor Jurisica3,4,5

Abstract
Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in
particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively
and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases,
and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient
computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1)
the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge
and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities.
While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training
and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and
confidence for clinical applications.

Keywords Precision medicine · Artificial intelligence · Machine learning · Decision support ·
Integrative computational biology · Network-based analysis · Radiomics

Data explosion and the vital need
for high-quality data

First and foremost, the biggest problem in the AI world is
the quality and sufficient volume of data. The most suc-
cessful machine learning methods are data hungry [1], and
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extremely sensitive to poor data quality [2]. In the medi-
cal domain, data quality (i.e., completeness, correctness) is
further extended by confidentiality requirements, and the
need for comprehensive annotation. It is amazing how bad
the standard data sets in the medical domain are (noisy,
sparse, wrong, biased, etc.), which was already described by
Komaroff in 1979, when he stated that “the taking of a medi-
cal history, the performance of the physical examination, the
interpretation of laboratory tests, even the definition of dis-
eases, are surprisingly inexact” [3]. Unfortunately, with the
introduction of sophisticated electronic patient record sys-
tems this is often even worse today, as incorrect data escape
routine checks and the errors are compounded across com-
putational workflows, frequently increasing clinical errors
[4]. Therefore, within a whole ML pipeline the aspect of
data processing is of utmost importance. Consequently, for
AI applications to be successfully applied to the medical
domain, an integrative machine learning approach might
be necessary [5], calling for the integration and fusion of
heterogeneous data sets, e.g., images, physiological data,
text (non-standardized“unstructure” and structured patient
records), and diverse omics profiles (gene, microRNA, pro-
tein, metabolic, etc.) [6].
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Generally, in the health domain one can identify different
areas of data volumes depending on the medical context in
which they have been created [7]:

• Patient data from the electronic patient records (EPR),
including clinical reports, mainly unstructured informa-
tion in written clinical reports, but also lab test data, and
all types of biomedical signals (ECG, EEG, EOG, etc).

• Imaging data, e.g., from radiology, pathology (whole
slide images), dermatology (dermoscopy), but also
sonography, etc.

• Biomedical research data, including clinical trial data
and all sort of omics data, particularly from next-
generation sequencing (NGS), etc. In addition to this
data, which is produced in a clinical environment, more
and more data is being generated outside the clinical
sector, i.e.,

• Health business data, including management data,
logistics, and accounting but also more and more
prediction (e.g., resource planning);

• Private patient data, produced completely outside the
clinical context, which is fostered by the possibilities
of modern low-cost smartphones such as sport data,
wellness and data for ambient assisted living (sensor
data)

The US Department of Health and Human Services
(HHS) created a taxonomy of health data with the following
seven dimensions:

1. Demographics and socioeconomic data including age,
gender, education, etc.

2. Health status data, including disabilities, diagnoses, and
symptoms

3. Health resources data including the capacities of the
health system, performance and operating data

4. Health-care utilization, including data about treatment
and duration

5. Health-care cost and expenditure data, including
charges, insurance status, etc.

6. Health-care outcomes of current and past prevention,
treatments, etc.

7. Other data including omics data, but also environmental
exposure data such as environmental impacts, etc.

Reproducibility is another recognized but still mostly
ignored issue. Currently, there is a huge trend in the
opposite direction: most scientific contributions are judged
according to their novelty—rarely for their reproducibility,
which would be the essential criteria of good science—
see the recent debate in Science [8]. A typical example is
that the data are considered as inaccessible due to ethical
restrictions. Data protection is of course an issue but there
must be solutions to publish data along with the results
and the international scientific community should be invited

to reproduce the results, for examples and a discussion
see [9].

Integrative computational biology

Developing effective knowledge systems to support the
governance, processing, inference, analysis and interactive
visualization of integrated omics data is critical to maximize
the impact on translational research. The importance of
visualization is often underestimated, but it is the quality
of the visualization that enables the experts end users to
understand the data in the context of their problems [10].
Visualization enables more accurate and relevant modeling
of healthy and disease states, and in turn support precision
medicine [11].

Integrating layers of omics data

Understanding complex diseases (e.g., arthritis, brain
disorders, cancer) requires computational analyses that
integrate diverse layers of data—imaging data, omics
profiles, clinical data, and annotations. Such complex data
needs to be analyzed using scalable data mining, machine
learning and statistical methods. In turn, comprehensive
integration, further analysis and modeling requires detailed
annotations and relationships among these entities (see
Fig. 1). Such integrated network-based analyses help
create and validate explainable disease models, and enable
improved treatments strategies and patient outcomes.

Radiomics can aid this process (see Fig. 1), by pro-
viding additional features for the analysis, improved dis-
ease characterization and patient stratification. Radiomics
enables more accurate disease classification than traditional
disease grading; for example, it significantly improves sen-
sitivity of identifying structural knee osteoarthritis [12].
Imaging data can provide integrated in the ”front end” by
supporting cancer detection Cameron-2016, characterizing
micro-environment [13], tracking tumor biology [14], cell
proliferation, and blood vessel formation [15]. This can aid
in more precise and earlier tumor detection and sybtyping
[16], more accurate staging, treatment planning, progno-
sis [17], and non-invasive response monitoring [18–20].
From the machine learning perspective, this helps reducing
noise and heterogeneity. Radiomics can also be integrated
in the ”back end” by helping quantifying disease dynamics
and predicting response to treatment [21] through series of
“digital biopsies”.

From individual biomarkers to signatures

One of the central tasks in precision medicine is the
identification of groups of markers for aiding diagnosis,
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Fig. 1 Network-based omics data integration and analysis

and for predicting risk and treatment outcome. The
discovery and validation of such biomarkers is a complex
and computationally intensive process, utilizing advanced
statistics and ML algorithms. Both unsupervised data
exploration and pattern discovery methods are useful. An
ideal approach is one that characterizes each sample on the
basis of a small number of biologically relevant, pathway-
related variables, integrating omics data with imaging and
clinical data.

Current radiomics studies usually use smaller cohorts,
extract many features, and have limited validation across
different instruments, leading to overfitting and in turn
overoptimistic results that do not generalize. An overfit
signature or model contains more features than could be
justified from the training data set. Recently, Phantom study
[22] explored reproducibility and robustness of radiomic
features for MRI, concluding that large fraction of imaging
features lack robustness. Standardizing instruments and
protocols will lead to ability for integrating larger datasets,
and validating signatures and models on independent
datasets. This will increase generalizability, and in turn
will help increasing reproducibility and robustness. In
turn, using robust features will result in better classifier
performance Robinson-2019.

Many methods have been introduced to generate useful
biomarkers from individual and combined layers of omics,
imaging and clinical data, but results remain unsatisfactory;
existing methods often suffer from overfitting due to
small numbers of samples. Proposed biomarkers frequently
do not validate using other biological assays or on a

different cohort of patients [23–25]. Reasons for such
failures include: (1) patient and sample heterogeneity,
(2) range of biological assays with different technical
and analytical biases, (3) diversity of statistical and
bioinformatics algorithms and annotation databases used,
(4) disproportionately many more variables than samples
analyzed, (5) and existence of multiple, clinically equivalent
biomarkers that basic statistical and ML algorithms cannot
distinguish. A promising alternative to the brute-force
approach that works in the space of expression levels of
thousands of genes, microRNAs, metabolites or proteins
takes advantage of relationships among these entities and
identifies a small number of biologically relevant, network-
structure or pathway-related variables, integrating high-
throughput, imaging, and clinical data.

Successful biomarker discovery and building explain-
able models require integration of diverse and heterogenous
databases, ontologies and biological networks. Ontolo-
gies and pathway/network annotations come from diverse,
distributed repositories, including Gene Ontology (http://
www.geneontology.org), Uniprot (http://www.uniprot.org),
ProteinData Bank (http://www.rcsb.org), Disease Ontology
(http://disease-ontology.org), Online Mendelian Inheri-
tance in Man (http://www.omim.org), DrugBank (http://
www.drugbank.ca), DisGeNET (http://www.disgenet.
org), The Comparative Toxicogenomics Database (http://
ctdbase.org), Integrated Interactions Database (http://
ophid.utoronto.ca/iid), pathDIP (http://ophid.utoronto.ca/
pathDIP), etc. (see http://omictools.com/ for extensive
list).
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Network-based computational biology

Successful network-based methods for class prediction
take advantage of network modules to identify score-
based sub-network biomarkers. This could take advantage
of identifying network structures (complexes, graphlets,
hubs and articulation points, etc.) or identifying overlap
with curated pathway databases. Multiple studies have
shown that resulting biomarkers are highly conserved across
studies.

These analytics workflows have to integrate diverse
heterogeneous data, comprising confidential and publicly
available data, local and broadly distributed data and
annotations. Some parts of the analysis may strongly
benefit from GPU (graphical processing unit) acceler-
ations (image feature extraction algorithms, deep neu-
ral networks, graph analysis algorithms), while others
require multi-core CPU (central processing unit) and
large bandwidth/storage. Implementing such discovery
pipelines using automated workflows [26] support effi-
ciency, increase validation rates and reproducibility [27].
Combining results of such analyses with diverse biological
networks, including transcription regulatory, protein inter-
action and microRNA:target networks, and metabolic and
signaling pathways, with transcriptional changes induced by
drugs [28] enables modeling drug mechanism of action. In
turn, radiomics can help predict [29] and measure treatment
response [30].

Interaction networks underlie the genotype to phenotype
relationship, understanding of which is the prime goal
for a system’s view of the cell, tissue or organism.
While each omics data layer can be analyzed separately,
integrating findings across data layers using biological
networks enables discovering new results through these
relationships. Integrated data and network models reduce
biases, improve coverage and quality by eliminating noise
and using reinforcement learning strategy to strengthen the
signal [31].

Applications of ”integrative radiomics” include combin-
ing radiomics features from MRI with peak area features
from MR spectroscopy (prostate cancer), integrating histo-
morphometric features with protein MS features for pre-
dicting 5-year recurrence (prostate cancer), or integrating
volumetric measurements on MRI with protein expression
features (Alzheimers’ diagnosis) [32]. Importantly, fMRI
data analysis helps creating complex network structures,
such as structural brain network [33], neuro-connectivity
after brain injury [34], or schizophrenia characterization
by functional connectivity [35]. All such application would
benefit from all the graph theoretical algorithms devel-
oped mainly for protein interaction network analysis and
characterization (e.g., [36, 37]).

Resulting multi-modal data can be further analyzed
and visualized using algorithms from graph theory, and
identify patterns characterizing graph structure-function
relationship. Linking network structure to properties of
genes and proteins that form it provides powerful method
for predicting function [36, 38–40], identifying robust
biomarkers [41, 42], and modeling drug mechanism of
action [43, 44].

Integrated network-based analyses will lead to improving
data interpretation, help generating testable hypotheses, and
creating biologically meaningful models with clinical rel-
evance [6, 45]. Importantly, broad imaging modalities and
diverse image data analysis algorithms will lead to robust
biomarkers for diagnosis and prognosis, but especially non-
invasive monitoring of response to therapy [21]. Examples
include molecular, functional and anatomical imaging and
image feature extraction [46], including CT, ultrasound,
magnetic resonance imaging, magnetic resonance spec-
troscopy, positron emission tomography, etc. Imaging helps
to identify subregions for further omics studies [47]. Net-
works bring individual data layers together, help de-noise
individual data sets, validate models, and explain results
[31].

Despite noise present in interaction data sets, their sys-
tematic analysis uncovers biologically relevant information:
lethality and synthetic lethality, functional organization,
hierarchical structure, modularity, and network-building
motifs. Synthetic lethality has been first explored by syn-
thetic genetic arrays to study genetic interaction in yeast
[48], then highly explored using graph theory algorithms
(e.g., [36–38, 49]), and understanding of these principles
resulted in applications for predicting drug combinations
(e.g., [44, 50]. As such, network-based analysis of patient
data is essential for developing stratified and patient-centric
treatment strategies. Besides improved analytics and scala-
bility, medical applications also require reliability, robust-
ness, and explainability. This allows transitions from pat-
terns and correlations to causation and explainable models
[51]. As such, they will provide “an intellectual prosthesis”
for the domain experts, striving for augmented rather than
just “artificial” intelligence.

AI for precisionmedicine

AI holds great promise to revolutionize cancer care and
bring precision medicine closer to reality [52–54]. There
is an urgent need to invest in collecting, curating and
annotating the data and developing the algorithms necessary
to implement AI tools to optimize research and care [55].
We describe below the opportunities provided by AI for
precision medicine.
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Biomarker discovery

Developing biomarkers for cancer diagnostic, prognosis
and prediction of therapy response or adverse side effects
constitutes one of the main challenges in precision
medicine. Combining the established clinical parameters
with other non-invasive measurements from radiological
images, blood or urine samples, would allow us to
develop better predictors of clinical outcome and improve
monitoring of treatment effects over the course of the
therapy. Deep neural networks have recently been used
to extract more information from radiological images, a
relatively new field referred to as radiomics [56], and
intense research is being pursued to further integrating
multiple data modalities for higher accuracy [57].

Imaging and genomic data have been shown to carry
redundant and complementary information to develop
biomarkers. For instance, Sun et al. showed that it is possi-
ble to develop a radiomics signature from CT images as a
surrogate for the level of CD8 cell tumor infiltration quan-
tified using RNA-sequencing [58]. This is an important
finding, as it provides a non-invasive way to quantify the
level of tumor infiltrated lymphocytes (TILs), an important
pathological measurement during immunotherapy). How-
ever, molecular profiling from tumor biopsy or blood draw
may reveal genomic aberrations that are undetectable from
images, supporting their complementary value with image-
based features.

In addition to biomarkers developed from data directly
measured in clinical settings, the massive amount of
imaging and genomics data generated in the pre-clinical
and research settings can be used to build novel predictors
of therapy response. Images and genomic data collected
during drug testing in vitro (e.g., established cancer cell
lines or patient-derived organoids) [59–61] and in vivo (e.g.,
genetically-engineered mouse models or patient-derived
xenografts) [62] is a prime example of the richness of data
that can be analyzed using AI methodologies to improve
clinical predictors.

Image segmentation

Imaging technologies are omnipresent in cancer research
and healthcare. AI, especially deep neural networks, already
demonstrated superior performance in image classification
and segmentation of natural images compared to other
machine learning approaches [63]. AI tools are being
developed to optimize the current workflows in radiology
and pathology [64]. Tumor and lymph node delineations
are complex and lengthy tasks performed by radiologists
and radiation oncologists and represent bottlenecks for
radiation therapy and monitoring of treatment effects,

which can be overcome by the use of AI tools for
(semi-)automated segmentation of radiological images [65].
AI-based segmentation will not only save time but will also
decrease the inter-observer variance that is currently high
in clinical settings, enabling clinicians to better identify
and monitor lymph nodes that either benign or at risk of
being invaded during tumor progression. Cardenas et al.
outline the most recent deep learning approaches using
in radiology showing unprecedented performance but also
poses serious challenges for their clinical deployment [66].
Notably, these challenges include the retraining of the deep
learning model on new data for calibration and performance
improvement, as described in the recent FDA while paper
on this topic.1 Similarly, AI can help pathologists speed
up and increase the reliability of the diagnosis based on
histo-pathological slides. Moreover, AI-based tools can
be developed to go beyond current diagnostic capabilities
and allow for more comprehensive identification of cell
types and their associations with aggressive phenotypes or
response to targeted and chemotherapies.

Natural language processing

Rich clinical data are embedded into dictated and tran-
scribed clinical notes. Recent advances in AI for natu-
ral language processing (NLP) allows for automated and
efficient extraction of discrete data elements from these
clinical notes [67]. NLP methods can be used to parse
the large amount of physicians’ notes, pathology reports,
radiology reports and other free-form clinical documenta-
tion sources generated in clinical trials and standard-of-
care. This is essential to provide context to other data
types, such as radiological, histo-pathological images and
genomics.

Ontology learning

While vast amounts of heterogeneous data are collected in
administrative, clinical and research databases, integration
and classification of these rich data sets are challenging
due to the use of different systems involved in data
collection and storage. Data across these various systems
are often coded inconsistently, and lack the defined context
required to fully understand the relationship between
different data concepts. Increasing use of coding standards
and the application of ontologies to these heterogeneous
data sets will help ensure the data is optimally classified
and integrated to enable advanced analytics. AI-based
methodologies can be used in NLP and ontology learning

1https://www.regulations.gov/document?D=FDA-2019-N-1185-0001
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to build and apply ontologies to better annotate and connect
data assets across the institution. Ontology learning is
the (semi-)automatic creation of ontologies, extracting the
domain’s terms and the relationships between the concepts
that these terms represent from a corpus of natural language
text, and encoding them with an ontology language for
easy retrieval [68]. As building ontologies manually is
extremely labor-intensive and time-consuming, there is
a great need to automate the process using recent AI-
based ontology learning applied to oncology, allowing us
to annotate and connect data at the scale of multiple
institutions.

Patient-reported outcomes

Learning more about the phenotypes of the patients
(disease, treatment response, adverse side effects, survival)
is crucial enable more relevant analyses of biomedical data
[69]. AI enables collection of health-related data from the
patients through the use of healthcare bots able to mimic
human conversations, incorporate NLP, sentiment analysis,
and perform image recognition tasks to analyze photos,
handwritten notes and barcodes related to the patients’
diseases, medications or treatment side effects [70]. AI-
based solutions can be used to better engage the patients
and collect high-quality patient-reported outcomes in a
systematic way. Such patient-reported outcomes can then
be used as output variables to predict from imaging and/or
other data types, therefore enriching the pool of clinical
questions that can be addressed using machine learning
approaches.

Monitoring patients with wearable devices

Wearable devices hold the promise to complement patient-
reported outcomes with longitudinal data streams for a
more comprehensive assessment of symptom progression,
requiring minimal patient interventions to inform their
physician on their health status [71]. These devices
are becoming increasingly popular among the healthy
population and cancer patients. Although the current sensors
are limited to a few vital signs and are still pending
regulatory approvals, the technology is evolving fast and
are being applied in clinical trials for a variety of diseases.
AI methods have the potential to efficiently integrate these
new data streams in clinical applications, while important
challenges remain to be addressed regarding possible
artifacts due to noisy sensors or incorrect use by the patients,
and issues about patient privacy. Wearable devices can
supplement current patient information to provide clinicians
with a more accurate view of the habits and needs of their
patients, allowing for treatment to be more tailored and
effective.

Future challenges and opportunities

One of the grand objectives of the AI community is to
develop algorithms that can automatically learn from data
and to provide predictions—without any human interaction,
called automatic or autonomous machine learning (aML).
A close concept is automated ML (AutoML), which
focuses on end-to-end automation of ML and helps, for
example, to solve the problem of automatically producing
test set predictions for a new data set - without any
human interaction [72]. Such automatic approaches are
currently very successful in daily routine and can solve
already a number of problems in an sufficient manner.
Standard best-practices include the advances achieved with
deep learning models in automatic speech recognition,
autonomous driving or game playing without human
intervention. Here the current best example is the mastering
of the game of Go, which has a long tradition in the AI
community and is indeed a good benchmark for progress in
automatic approaches [73].

However, all these approaches are limited to certain
tasks in a very narrow field of specialization and totally
lacking human-centered aspects, e.g., emotion, which is
influencing cognition, perception, learning, communication
and decision making [74]. Such approaches are not yet
applied in the medical domain or on very specific small-
scale problems. The currently best performing working
examples are in automatic image classification, which are
on par with medical doctors or even outperforms them [75].
However, bio-medical applications are diverse and as such,
there will only be some parts fully automated, while other
will require human experts involved in the decision-support
process – one size will not fit all. Importantly, considering
the complexities of medical decisions and liability, we
will get further and faster by empowering/augmenting
experts with AI-technology rather than replacing them,
using the human-in-the-loop concept [76] or at least
put the human-in-control. Using AI/ML solutions as an
augmenting/assistive technology [77] has the benefit that
both can complement each other, the human and the
machine. To date, only human experts are able to understand
the overall context [78].

Definitively the future will be in integrative approaches:
Integrative omics will link biopsy or liquid biopsy to provide
time-course view of disease progression and treatment
response, effective and efficient analytic pipelines will
ensure scalable and reproducible results, diverse networks
will help link relationships among measured entities across
multiple data layers and build explainable models, which
in turn will provide improved hypothesis generation,
validation and translation into clinical practice. A look
further is in bringing wearable devices, which will enable a
true “patient-centric” approach—as each patient’s data over
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time will be compared not to other patients with a similar
condition/symptoms; rather, to their own, long-term data.

Finally, reproducibility, cost-efficiency, acquisition time,
resolution and resulting confidence and precision are vital.
AI and ML will become mainstream in the medical field,
but cohort differences, instrument and protocol variations,
overall data quality, integrity and relevant annotation
are paramount. The goals of comprehensively integrative
systems are not just classification; instead, the most useful
application will be helping human experts discover new
knowledge, form new questions and help explain and
comprehend complex biological states and processes.
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Appendix: Abbreviations

AI ... Artificial Intelligence
CPU ... Central Processing Unit
CT ... Computer Tomography
ECG ... Electrocardiography
EEG ... Electroencephalography
EOG ... Electrooculography
EPR ... Electronic Patient Record
fMRI ... Functional Magnetic Resonance Imag-

ing
GPU ... raphical Processing Unit
ICD ... International Classification of Diseases
ML ... Machine Learning
MRI ... Magnetic Resonance Imaging
NGS ... Next-Generation Sequencing
SNOMED CT ... Standard Nomenclature of Medicine

Clinical Terms
TILs ... Tumor Infiltrated Lymphocytes
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