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Abstract—The success of statistical machine learning (ML)
methods made the field of Artificial Intelligence (AI) so pop-
ular again, after the last AI winter. Meanwhile deep learning
approaches even exceed human performance in particular tasks.
However, such approaches have some disadvantages besides
of needing big quality data, much computational power and
engineering effort; those approaches are becoming increasingly
opaque, and even if we understand the underlying mathematical
principles of such models they still lack explicit declarative
knowledge. For example, words are mapped to high-dimensional
vectors, making them unintelligible to humans. What we need
in the future are context-adaptive procedures, i.e. systems that
construct contextual explanatory models for classes of real-world
phenomena. This is the goal of explainable AI, which is not
a new field; rather, the problem of explainability is as old as
AI itself. While rule-based approaches of early AI were com-
prehensible ”glass-box” approaches at least in narrow domains,
their weakness was in dealing with uncertainties of the real
world. Maybe one step further is in linking probabilistic learning
methods with large knowledge representations (ontologies) and
logical approaches, thus making results re-traceable, explainable
and comprehensible on demand.

I. INTRODUCTION

This talk is divided into six sections: 1) I will start with

explaining the HCI–KDD approach towards integrative ma-

chine learning (ML); 2) I will continue with discussing the

importance of understanding intelligence and 3) show very

briefly our application domain health, where it becomes clear

why 4) dealing with uncertainty is important. A quick journey

through some successful applications of 5) automatic machine

learning (aML) will bring us to the limitations of these and

let us understand that sometimes a human-in-the-loop can be

beneficial. The discussion of 6) interactive machine learning

(iML) will directly lead us to the topic 7) explainable AI; I

will finish the talk with outlining some future directions.

II. WHAT IS THE HCI–KDD APPROACH?

ML is a very practical field. Algorithm development is at

the core, however, successful ML requires a concerted effort of

various experts with diverse background. Such a field needs an

integrated approach: Integrative Machine Learning [1] is based

on the idea of combining the best of the two worlds dealing

with understanding intelligence, which is manifested in the
HCI–KDD approach:[2, 3, 4]: Human–Computer Interaction

(HCI), rooted in cognitive science, particularly dealing with

human intelligence, and Knowledge Discovery/Data Mining
(KDD), rooted in computer science particularly dealing with

artificial intelligence. This approach fosters a complete ma-
chine learning pipeline beyond algorithm development. It in-

cludes knowledge extraction, ranging from issues of data pre-

processing, data mapping and data fusion of heterogeneous and

high-dimensional data sets up to the visualization of the results

in a dimension accessible to a human end-user and making

data interactively accessible and manipulable. Thematically,

these Machine Learning & Knowledge Extraction (MAKE)

pipeline encompasses seven sections ([5], [6]):

Section 1: Data: data preprocessing, integration, map-
ping, fusion. This starts with understanding the physical
aspects of raw data and fostering a deep understanding of

the data ecosystem, particularly within an application domain.

Quality of the data is of utmost importance.

Section 2: Learning: algorithms. The core section deals
with all aspects of learning algorithms, in the design, devel-

opment, experimentation, testing and evaluation of algorithms

generally and in the application to application domains specif-

ically.

Section 3: Visualization: data visualization, visual analy-
sis. At the end of the pipeline there is a human, who is limited
to perceive information in dimensions � 3. It is a hard task to
map the results, gained in arbitrarily high dimensional spaces,

down to the lower dimensions, ultimately to R2.

Section 4: Privacy: Data Protection, Safety & Security.
Worldwide increasing demands on data protection laws and

regulations (e.g., the new European Union data protection di-

rections), privacy aware machine learning becomes a necessity

not an add-on. New approaches, e.g., federated learning, glass-

box approaches, will be important in the future. However, all

these topics needs a strong focus on usability, acceptance and

also social issues.

Section 5: Network Science: Graph-Based Data Mining.
Graph theory provides powerful tools to map data structures

and to find novel connections between data objects and the

inferred graphs can be further analyzed by using graph-

theoretical, statistical and ML techniques.

Section 6: Topology: Topology-Based Data Mining. The

55



most popular techniques of computational topology include

homology and persistence and the combination with ML
approaches would have enormous potential for solving many

practical problems.

Section 7: Entropy: Entropy-Based Data Mining. En-
tropy can be used as a measure of uncertainty in data,
thus provides a bridge to theoretical and practical aspects

of information science (e.g., Kullback–Leibler Divergence for

distance measure of probability distributions).

I will explain our HCI–KDD logo in more detail later on, but

before we shall talk briefly about understanding intelligence.

III. UNDERSTANDING INTELLIGENCE

”Solve intelligence – then solve everything else” ... if I

would say this, my students would not believe it; therefore

not I am saying this, but it is the official motto of Google

Deepmind (see e.g. the talk by Demis Hassabis from May,

22, 2015).

Now let me explain our HCI-KDD logo1 in more detail:

Augmenting human intelligence (left) with artificial intelli-

gence (right) means mapping results from high-dimensional

spaces into the lower dimensions [3]. The logo shall indicate

the connection between Cognitive Science and Computer

Science: Cognitive Science studies the principles of human
intelligence and human learning [7]. Our natural surrounding

is in R3 and humans are excellent in perceiving patterns out

of data sets with dimensions of ≤ 3. In fact, it is amazing
how humans learn and extract so much knowledge even from

little or incomplete data [8]. This is a strong motivator for

the concept of interactive Machine Learning (iML), i.e., using

the experience, knowledge, even the intuition of humans to

help to solve problems which would otherwise remain compu-

tationally intractable. However, in most application domains,

e.g., in health informatics, we are challenged with data of

arbitrarily high dimensions [9]. Within such data, relevant

structural patterns and/or temporal patterns (“knowledge”)
are often hidden, knowledge is difficult to extract, hence not

directly accessible to a human. There is need to bring the

results from these high dimensions into the lower dimension

for the human end user2 – the ”customer” of ML/AI.

Computer Science studies the principles of computational
learning from data to understand artificial intelligence [10].

Computational learning has been of general interest for a very

long time, but we are far away from solving intelligence:

facts are not knowledge and descriptions are not insight, and

new approaches are needed. A challenge is to interactively

discover unknown patterns within high-dimensional data sets.

Computational geometry and algebraic topology may be of

great help here [11]. For example, if we define M as hidden

parameter space, and we define RD as an observation space,

and let f : M → R
D be a continuous embedding; X ⊂ M

be a finite set of data points, and Y = f(X) ⊂ R
D shall be

the image of these points under the mapping f . Consequently,

1https://hci-kdd.org
2Although this can range from tablet computers to large wall-displays the

representation is always limited to R2.

we may refer to X as the hidden data, and Y as the observed
data. If we suppose that M , f and X are unknown, but Y is
known, the question remains if we can identifyM? [12]. Such
questions are studied in section 6 of the MAKE-approach [13].

Consequently, to reach a level of usable intelligence, we
need (1) to learn from prior data, (2) to extract knowledge,

(3) to generalize, (4) to fight the curse of dimensionality,

(5) to disentangle the underlying explanatory factors of the

data [14] and (6) to understand the data in the context of an

application domain. One grand challenge still remains open:

to make sense of the data in the context of the application

domain. The quality of data and appropriate features matter

most, and previous work has shown that the best-performing

methods typically combine multiple low-level features with

high-level context [15].

We compare a DQN-agent (Deep Q-learning, Q-learning is

a kind of model-free reinforcement learning [16]) with the

best reinforcement learning methods, where we normalize the

performance of the DQN-agent with respect to a professional

human games tester (that is, 100% level) and random play (that

is, 0% level). It can be seen that DQN outperforms competing

methods in almost all the games, and performs at a level that is

broadly comparable with or superior to a professional human

games tester (that is, operationalized as a level of 75% or

above) in the majority of games. However, still humans are

much better in certain games, and the question remains open

why [7].

Always robotics is seen as the most feared threat of AI for

mankind3. In this talk, I want to emphasize that humanoid

AI �= human-level AI. Achievement of human-level machine

intelligence was the basic objective since the early days of AI.

It was actually started by Alan Turing with his question Can

machines think? [17]. Exaggerated expectations led to a bitter

AI-winter, and recently we have been feeling a real AI-spring

[18].

IV. APPLICATION AREA: HEALTH

Why is the application domain health complex? In medicine

we have two different worlds: we have the science of medicine:

mathematics, physics, physiology, biology, chemistry, etc. at

the bench; and there is the clinical medicine focusing on the

patient at the bed side. The main problem is that there is

a (big) gap between those two (and some say not only a

big gap, but there is an ocean between those two worlds).

How can we bridge this gap? Our central hypothesis is:

information may bridge this gap. Not data. Not knowledge.
It is the quality of information what both sides need for
making decisions [19]. Optimally designed workflows thereby

integrating sophisticated AI/ML with appropriate visualization

[20] directly into the workplaces of medical professionals may

therefore be a great help for future medicine.

In the medical domain the Number 1 problem is the bad

quality of data along with the heterogeneity of data [21].

Consequently data integration, data fusion and data mapping

3Intelligence does not need a metal body to be a thread
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is one of the most important issues of data science and the

combination of various data would enable to get new kinds of

information, hence novel insights.

However, most of the data are in arbitrarily high dimen-

sions, therefore we are always confronted with the curse of

dimensionality [22].

A further problem is complexity, of all sort: clinical practice,

organization and information management are interdependent

and built around multiple self adjusting and interacting sys-

tems. Here we are always confronted with unpredictability,

non-linearity and non-homogeneity in time [23].

All these lead us to the fourth main problem: uncertainty.

V. DEALING WITH UNCERTAINTY: STATISTICAL LEARNING

FROM BIG DATA

We now briefly rehearse the very basics of what makes

current ML so successful. The principles are so fascinat-

ing simple: Bayesian learning, optimization and prediction

(inverse probability), which go back to Thomas Bayes and

Richard Price [24]. I emphasize here that it was Pierre Simon

de Laplace who did the pioneering work and delivered us the

foundations of statistical machine learning [25], [26].

Let us consider n data contained in a set D

D = x1:n = {x1, x2, ..., xn}
and let us write down the expression for the likelihood:

p(D|θ) (1)

Next we specify a prior:

p(θ) (2)

Finally we can compute the posterior:

p(θ|D) =
p(D|θ) ∗ p(θ)
p(D)

(3)

The inverse probability allows to learn from data, infer

unknowns, and make predictions [27].

Most fascinating is the simplicity of this approach; we can

add probabilities (sum rule):

p(x) =
∑
y

(p(x, y)) (4)

By introducing ”repeated adding” (adding multiple times), we

can write (product rule):

p(x, y) = p(y|x) ∗ p(y) (5)

Laplace (in 1773 !) showed that we can write:

p(x, y) ∗ p(y) = p(y|x) ∗ p(x) (6)

and introduced a third operation (division):

p(x, y) ∗ p(y)
p(y)

=
p(y|x) ∗ p(x)
p(y)

(7)

now we can reduce this fraction by p(y) and we receive what
is today called Bayes rule (actually it was Laplace)4:

p(x, y) =
p(y|x) ∗ p(x)
p(y)

(8)

And this is now the basis for machine learning and applied in

all sort of advanced techniques, based on adding, and repeated

adding, and this is what our Von Neumann machines can do

good. However, it is not that easy in high-dimensional spaces,

and a grand challenge is: How to add efficient.

In the following the large H is the hypothesis space, and

e.g. decision making is searching for an optimal solution in

an arbitrarily high dimensional search space. However, in

medicine we need not always the optimal solution often a

good solution in short time is better because time is a very
critical aspect!

If we denote d as the data and h as the hypothesis and with
H = {H1, H2, ..., Hn} then ∀(h, d)

P (h|d) =
P (d|h) ∗ P (h)∑
�∈H p(d|�)p(�)

(9)

P (h|d) =
P (d|h) ∗ P (h)∑

h′∈H P (d|h′)P (h′)
(10)

J =

∫
f(θ) ∗ p(θ|D)dθ (11)

These astonishingly simple fundamentals led to the current

success in automatic machine learning.

VI. AUTOMATIC MACHINE LEARNING (AML)

The ML community today is concentrating on automatic
machine learning (aML) approaches, with the grand goal

of bringing humans-out-of-the-loop [28], resulting in fully

autonomous solutions. Maybe the best practice real-world

example of today is autonomous driving [29].

This automatic machine learning (aML) works well when
having large amounts of training data [30]. That means the

often debated ”big data” issue is not bad, instead the large

amount of data is beneficial for automatic approaches (and I

emphasize again the need of good quality data!).

However, sometimes we do not have large amounts of

data, and/or we are confronted with rare events and/or hard

problems. The health domain is a representative example for

a domain with many such complex data problems [31, 32].

In such domains the application of fully automatic approaches

(“press the button and wait for the results”) seems elusive in

the near future.

Again, a good example are Gaussian processes, where aML

approaches (e.g., kernel machines [33]) struggle on function

extrapolation problems, which are astonishingly trivial for

human learners [34].

A famous example was given by [35] where they considered

the problem of building high-level, class-specific feature de-

tectors from unlabeled for detecting a cat automatically on the

4to be completely correct it should be called Bayes-Price-Laplace: BPL
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basis of 10 million 200200 pixel internet images. They trained

a deep autoencoder on a cluster with 1,000 machines (16,000

cores) for three days. The results impressively demonstrated

that it is possible to train an image detector without labelling

the images - but at what price.

A more recent example is the work by [36], who pre-

sented fully automated classification of skin lesions using

dermatological images. They trained deep convolutional neural

networks with a data set of 129,450 clinical images. They

used a GoogleNet Inception v3 network, pretrained on approx-

imately 1.28 million images (1,000 object categories) from

the 2014 ImageNet Large Scale Visual Recognition Challenge.

The authors tested the performance against 21 board-certified

dermatologists on biopsy-proven clinical images with two

critical binary classification use cases: keratinocyte carcinomas

versus benign seborrheic keratoses; and malignant melanomas

versus benign nevi. The automatic ML achieves performance

on par with the 21 medical doctors, demonstrating that AI

is actually capable of classifying skin cancer with a level of

competence comparable to dermatologists.

Despite their impressive results such automatic approaches

have some limitations:

1) they are very data intensive, need often millions of

training samples of highest quality which is both hard

to achieve;

2) they are non-convex, difficult to set up, difficult to train

and to optimize, are very error prone and sensitive

to adversarial examples, consequently need a lot of

engineering effort;

3) the are affected by catastrophic forgetting, so when a

problem changes only slightly, it looses the learned

parameters, this calls urgently for transfer learning and

multi-task learning;

4) they are very resource intensive, need much computa-

tional power and storage;

5) they are bad in dealing with uncertainties; but

6) most of all such approaches are considered to be black-

box approaches, they lack transparency, do therefore

not foster trust and acceptance, and legal aspects make

such opaque models extremely difficult to use in certain

situations

So, sometimes we (still) need a human-in-the-loop. Some-

times we do not have big data where aML algorithms benefit,

sometimes we have only small amount of data sets (see e.g.

[37], or we have rare events or even no training samples,

or we deal with NP-hard problems, e.g. subspace clustering,

protein folding, or k-anonymization, to name three. This leads

us directly to interactive machine learning.

VII. INTERACTIVE MACHINE LEARNING (IML)

However, we cannot compare car driving with the com-

plexity of the biomedical domain. The main problem for

automatic solutions is in the extremely poor quality of data

in this domain. Biomedical data sets are full of uncertainty,

incompleteness etc.; they can contain missing, wrong data,

noisy data, dirty data, unwanted data, etc. However, many

problems are computationally hard. All these constraints make

the application of fully automated approaches difficult or

even impossible. Also, the quality of results from automatic

approaches might be questionable. Consequently, the integra-

tion of the knowledge, intuition and experience of a domain

expert can sometimes be indispensable and the interaction of a

domain expert with the data would greatly enhance the whole

ML pipeline. Hence, interactive machine learning (iML) puts
the “human-in-the-algorithmic-loop” to enable what neither a

human nor a computer could do on their own.

We define iML-approaches as algorithms in an multi-agent-

hybrid system, that can interact with both computational agents

and human agents5 and can optimize their learning behaviour

through these interactions [39].

Why should the integration of human intelligence be bene-

ficial? One strength of humans is that they, even little children,

can make inferences from little data (zero-shot learning). The

greatest strength is that the are able to recognize the context.

There is evidence that humans sometimes even outperform

ML-algorithms. Humans can provide almost instantaneous

interpretations of complex patterns, for example in diagnostic

radiologic imaging: A promising technique to fill the semantic

gap is to adopt an expert-in-the-loop approach, to integrate

the physicians high-level expert knowledge into the retrieval

process by acquiring his/her relevance judgments regarding a

set of initial retrieval results [40].

Consequently, iML-approaches, by integrating a human-

into-the-loop (e.g. a human kernel [41], or the involvement

of a human directly into the machine-learning algorithm [39],

thereby making use of human cognitive abilities, seems to be

a promising approach. iML-approaches can be of particular

interest to solve problems in health informatics, where we

are lacking big data sets, deal with complex data and/or rare

events, where traditional learning algorithms suffer due to

insufficient training samples. Here the doctor-in-the-loop can

help, where human expertise and long-term experience can

assist in solving problems which otherwise would remain NP-

hard.

A recent experimental work [42] demonstrates the useful-

ness on the Traveling Salesman Problem (TSP), which appears

in a number of practical problems, e.g., the native folded three-

dimensional conformation of a protein in its lowest free energy

state; or both 2D and 3D folding processes as a free energy

minimization problem belong to a large set of computational

problems, assumed to be conditionally intractable [43]. As

the TSP is about finding the shortest path through a set of

points, it is an intransigent mathematical problem, where many

heuristics have been developed in the past to find approximate

solutions [44]. There is evidence that the inclusion of a human

can be useful in numerous other problems in different appli-

cation domains, see e.g., [45, 46]. However, for clarification,

iML means the integration of a human into the algorithmic
loop, i.e., to open the black box approach to a glass box. Other

definitions speak also of a human-in-the-loop, but it is what

5In Active Learning such agents are referred to as so-called “oracles” [38]
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we would call classic supervised approaches [47], or in a total

different meaning to put the human into physical feedback

loops [48].

In such cases the inclusion of a “doctor-into-the-loop” [49]

can play a significant role in support of solving hard problems

(see the examples in the next paragraph), particularly in combi-

nation with a large number of human agents (crowdsourcing).

From the theory of human problem solving it is known that,

for example, medical doctors can often make diagnoses with

great reliability - but without being able to explain their rules

explicitly. Here iML could help to equip algorithms with such

“instinctive” knowledge and learn thereof. The importance

of iML becomes also apparent when the use of automated

solutions due to the incompleteness of ontologies is difficult

[50].

In the following I provide three examples where the human-

in-the-loop is beneficial.

iML-Example 1: Subspace Clustering

Clustering is a descriptive task to identify homogeneous

groups of data objects based on the dimensions. Cluster-

ing of large high-dimensional gene expression data sets has

widespread application in -omics [51].

Unfortunately, the underlying structure of these natural data

sets is often fuzzy, and the computational identification of data

clusters generally requires domain expert knowledge about e.g.

cluster number and geometry. The high-dimensionality of data

is a huge problem in health informatics, because of the curse

of dimensionality: with increasing dimensionality the volume

of the space increases so fast that the available data becomes

sparse, hence, it becomes impossible to find reliable clusters;

also the concept of distance becomes less precise as the num-

ber of dimensions grows, since the distance between any two

points in a given data set converges. Last but not least different

clusters might be found in different subspaces, so a global

filtering of attributes is not sufficient. Given that large number

of attributes, it is likely that some attributes are correlated,

therefore clusters might exist in arbitrarily oriented affinity

subspaces. Moreover, high-dimensional data often includes

irrelevant features, which can obscure to find the relevant ones,
thus increases the danger of modeling artifacts (i.e. undesired

outcomes or errors which can be misleading or confusing)

[52]. The integration of a human-in-the-loop can be of help

[53].

iML-Example 2: Protein Folding

Proteins6 are very important for all life sciences. In protein

structure prediction there is much interest in using amino acid

interaction preferences to align (thread) a protein sequence

to a known structural motif. The protein alignment decision

problem (does there exist an alignment (threading) with a

score less than or equal to K?) is NP-complete and the related

problem of finding the globally optimal protein threading is

6In my talk I provide an example from protein conformation, i.e. the x-
ray structure of Avian Pancreatic Polypeptide (APP), which is a medium-size
protein of 36 amino acids [54].

NP-hard. Therefore, no polynomial time algorithm is possible

(unless P = NP). Consequently the protein folding problem is

NP-complete [55].

Many such problems (still) require an expert-in-the-loop,

e.g., genome annotation, image analysis, knowledge-base pop-

ulation and protein structure. In some cases, humans are

needed in vast quantities (e.g. in cancer research), whereas

in others, we need just a few very specialized experts in

certain fields (e.g., in the case of rare diseases). Crowdsourc-

ing encompasses an emerging collection of approaches for

harnessing such distributed human intelligence. Recently, the

bioinformatics community has begun to apply crowdsourcing

in a variety of contexts, yet few resources are available that

describe how these human-powered systems work and how to

use them effectively in scientific domains. Generally, there are

large-volume micro-tasks and highly difficult mega-tasks [56].

A good example of such an approach is foldit, an experimental
game which takes advantage of crowdsourcing for category
discovery of new protein structures [57]. Crowdsourcing and
collective intelligence (putting many experts-into-the-loop)

would generally offer much potential to foster translational

medicine (bridging biomedical sciences and clinical applica-

tions) by providing platforms upon which interdisciplinary

workforces can communicate and collaborate [58].

iML-Example 3: k-anonymization of patient data

Privacy preserving machine learning is an important issue,

fostered by anonymization, in which a record is released

only if it is indistinguishable from k other entities in the
data. k-anonymity is highly dependent on spatial locality in

order to effectively implement the technique in a statistically

robust way, and in high dimensionalities data becomes sparse,

hence, the concept of spatial locality is not easy to define.

Consequently, it becomes difficult to anonymize the data

without an unacceptably high amount of information loss [59].

Consequently, the problem of k-anonymization is on the one

hand NP-hard, on the other hand the quality of the result

obtained can be measured at the given factors: k-anonymity
means that attributes are suppressed or generalized until each

row in a database is identical with at least k − 1 other rows
[60] [61]; l-diversity as extension of the k-anonymity model
reduces the granularity of data representation by generalization

and suppression so that any given record maps onto at least k
other records in the data [62]; t-closeness is a refinement of
l-diversity by reducing the granularity of a data representation,

and treating the values of an attribute distinctly by taking into

account the distribution of data values for that attribute [63];

and delta-presence, which links the quality of anonymization
to the risk posed by inadequate anonymization [64]), but not

with regard to the actual security of the data, i.e., the re-

identification through an attacker. For this purpose certain

assumptions about the background knowledge of the hypo-

thetical enemy must be made. With regard to the particular

demographic and cultural clinical environment this is best done

by a human agent. Thus, the problem of (k-)anonymization

represents a natural application domain for iML.
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Humans are very capable in the explorative learning of

patterns from relatively few samples, whilst classic supervised

ML needs large sets of data and long processing time. In

the biomedical domain often large sets of training data are

missing, e.g., with rare diseases or with malfunctions of

humans or machines. Moreover, in clinical medicine time is

a crucial factor - where a medical doctor needs the results

quasi in real-time, or at least in a very short time (less than 5

minutes), for example, in emergency medicine or intensive

care. Rare diseases are often life threatening and require

a rapid intervention - the lack of much data makes aML-

approaches nearly impossible. An example for such a rare dis-

ease with only few available data sets is CADASIL (Cerebral

Autosomal Dominant Arteriopathy with Subcortical Infarcts

and Leukoencephalopathy), a disease, which is prevalent in

5 per 100,000 persons and is therefore the most frequent

monogenic inherited apoplectic stroke in Germany.

Particularly in the patient admission, human agents have

the advantage to perceive the total situation at a glance. This

aptitude results from the ability of transfer learning, where

knowledge can be transferred from one situation to another

situation, in which model parameters, i.e., learned features or

contextual knowledge are transferred.

The examples mentioned so far demonstrate that the appli-

cation of iML-approaches in “real-world” situations sometimes

can be advantageous. These examples demonstrate, that human

experience can help to reduce a search space of exponen-

tial possibilities drastically by heuristic selection of samples,

thereby help to solve NP-hard problems efficiently - or at least

optimize them acceptably for a human end-user.

We focused in a recent work [42] on the Traveling Salesman

Problem (TSP), because it appears in a number of practical

problems in health informatics, e.g. the native folded three-

dimensional conformation of a protein is its lowest free energy

state and both two- and three-dimensional folding processes

as a free energy minimization problem belong to a large

set of computational problems, assumed to be very hard

(conditionally intractable) [43].

The TSP basically is about finding the shortest path through

a set of points, returning to the origin. As it is an intransigent

mathematical problem, many heuristics have been developed

in the past to find approximate solutions [44].

The Traveling Salesman Problem (TSP) is one of the most
known and studied Combinatorial Optimization Problems.
Problems connected to TSP were mentioned as early as the
last eighteenth century [65]. During the past century, TSP
has become a traditional example of difficult problems and

also a common testing problem for new methodologies and

algorithms in Optimization. It has now many variants, solving

approaches and applications [66]. For example, it models in

computational biology the construction of the evolutionary

trees [67] and in genetics - the DNA sequencing [68] - to

provide only a few examples.

The problem is a NP-hard problem, meaning that there is
no polynomial algorithm for solving it to optimality. For a

given number of n cities there are (n− 1)! different tours.

In terms of integer linear programming the TSP is formu-

lated as follows [69].

The cities, as the nodes, are in the set N of numbers

1, . . . , n; the edges are L = {(i, j) : i, j ∈ N , i �= j}
There are considered several variables: xij as in equa-

tion (12), the cost between cities i and j denoted with cij .

xij =

{
1 , the path goes from city i to city j
0 otherwise

(12)

The Traveling Salesman Problem is formulated to optimize,

more precisely to minimize the objective function illustrated

in equation (13).

min

n∑
i=1

n∑
i �=j,j=1

cijxij (13)

The TSP constraints follow.

• The first condition, equation (14) is that each node i is
visited only once.∑

i∈N ,(i,j)∈L
xij +

∑
j∈N ,(i,j)∈L

xji = 2 (14)

• The second condition, equation (15), ensures that no
subtours, S are allowed.∑
i,j∈L,(i,j)∈S

xij ≤ |S| − 1, ∀S ⊂ N : 2 ≤ |S| ≤ n− 2

(15)

For the symmetric TSP the condition cij = cji holds. For
the metric version the triangle inequality holds: cik + ckj ≥
cij , ∀i, j, k nodes.
We implemented the travelling Snakesman7 in C�, which

is also part of the .NET framework. The choice was made

because it is supported by the game engine Unity [70].

If you are now smiling, or even skeptical that we use a game

for our experiments, I would like to emphasize that Google

is making enormous progress through the use of such games,

see e.g. [7].

Gamification [71] is very powerful and we also could

proof the concept of interactive machine learning with the

human-in-the-loop with gamification experiments. Psycholog-

ical research indicates that human intuition based on distinct

behavioral and cognitive strategies that developed evolutionary

over millions of years. For improving ML, we need to identify

the concrete mechanisms and we argue that this can be done

best by observing crowd behaviors and decisions in gamified

situations (see also a classic example for the usefulness of

games in [72].

VIII. TOWARDS EXPLAINABLE AI

Very interesting was the recent success in mastering the

game of go without human knowledge [73].

When Google DeepMind won the (human) Go player ex-

claimed: ”Why did it make this move ...”. The main problem

7https://hci-kdd.org/project/iml
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is that the best performing methods are ”black boxes” and can

not ”explain” why they came up with a certain decision.

Unfortunately, always the ”no free-lunch”-theorem [74] is

true, and also in explainable AI we have a ”trade-off between

prediction performance and explainability: the most perform-

ing models are the least transparent. DARPA had last year

initiated a funding initiative with the goal to create a suite of

ML techniques that produce explainable models, while at the

same time maintaining a high level of performance [75].

At first we should make us aware of what is understandable

to a human; understanding is not only recognizing, perceiving

and reproducing or simply a ”re-presentation” of facts, but the

intellectual understanding of the context in which these facts
appear. Rather, understanding can be seen as a bridge between

perceiving and reasoning. From capturing the context, without

doubt an important indicator of intelligence, the current state-

of-the-art AI is still many miles away. On the other hand,

humans are able to instantaneously capture the context and

make very good generalizations from very few data points –

at least in the lower dimensions [76]. I present an example8

of an explanation interface from our own work: A heatmap

for visualizing molecule properties; the central view is an

interactive table view (1), i.e. the columns are molecules

grouped by similarities using an hierarchical cluster algorithm.

The dendrogram (2) shows the grouping, that means the end

user can decide which molecules form a group. The rows

are characteristics of the molecules, e.g. efficacy, chemical

and other numerical measurements. The values per molecule

are color-coded, so one can quickly see how groups differ.

Exploration is done through interaction and drill-down, among

other things to get structure explanations. In 3 we see the

settings to configure the heatmap; between the left sidebar

and the heatmap we find the legend for the values (4), on the

right the names of the molecules (5); the controls (6) and a

tree map (7) [51].

IX. FUTURE OUTLOOK

One possibility of how we might bridge the gap between

artificial inference and human understanding is a combination

of deep learning technologies with ontological approaches

[77]. A good current example is Deep Tensor [78], which is

a deep neural network, suited for data sets with meaningful

graph-like properties and it is beneficial for us that the domains

of biology, chemistry, medicine, drug design, etc. offer many

such data sets (see for an overview [79]). Here the interactions

between various entities (mutations, genes, drugs, disease,

etc.) can be encoded via graphs. If we now consider a Deep

Tensor network that learns to identify biological interaction

paths that lead to a certain disease, we would be able now

to automatically identify and to make understandable the

inference factors that significantly influenced the classification
results. These influence factors can further be used to filter

a knowledge graph [80] constructed from publicly available

8the image can be seen here: https://gi.de/informatiklexikon/explainable-ai-
ex-ai

medical research corpora (large ontologies). In addition, the

resulting interaction paths are further constrained by known

logical limitations of the domain (in this example: Biology).

As a result, the classification is presented, thus can be made

re-traceable, hence be explained by an human expert as an an-

notated interaction path, with annotations on each edge linking

to specific medical texts that provide supporting evidence [81].

A framework for unsupervised learning of a hierarchical

reconfigurable image template was presented by [82]. This

AND-OR Template (AOT) for visual objects shows three inter-

esting elements: 1) a hierarchical composition as AND nodes,

2) the deformation and articulation of parts as geometric OR

nodes, and 3) multiple ways of composition as structural OR

nodes. The terminal nodes are hybrid image templates (HIT)

[83] that are fully generative to the pixels. Both structures and

parameters of this model can be learned unsupervised from

images using an information projection principle; which is an

awesome technique known for a long time [84], [85]. The

learning algorithm itself consists of two steps: 1) a recursive

block pursuit procedure to learn the hierarchical dictionary

of the primitives, and 2) a graph compression procedure to

minimize the model structure for generalizability.

A good example is the hierarchical generative model pre-

sented by Lin et al. (2009), where objects are broken into

their constituent parts (Yann LeCun always underlies in his

talks that ”our world is compositional” which is also often

used by Alan Yuille, Jason Eisner, Stuart A Geman) and

the variability of configurations and relationships between

these parts are modeled by stochastic attribute graph gram-
mars. These are embedded in an AND-OR graph for each
compositional object category. It combines the power of a

stochastic context free grammar to express the variability of

part configurations and a Markov random field represents

the pictorial spatial relationships between these parts. As a

generative model, different object instances of a category can

be realized as a traversal through the AND-OR graph in order

to get a valid configuration. The inference is connected to the

structure of the model and follows a probabilistic formulation

consisting of bottom-up detection steps for the parts, which

in turn recursively activate the grammar rules for top-down

verification and searches for missing parts [86].

Coming to the conclusion, I want to emphasize that com-

putational approaches can find patterns in arbitrarily high-

dimensional spaces what no human would be able to see.

Consequently, we need an augmentation of human intelligence

with artificial intelligence - but also vice versa. In particular

situations of problem solving to date only human experts are

able to understand the context. Therefore we need solutions

for effective mapping of results from high dimensional spaces

into the lower dimensions to make it not only perceivable and

manipulative to humans, but the raising challenge is that the

best performing methods are the least transparent. Our best

methods are not re-traceable, thus not understandable, hence

it is not possible to explain why a decision has been made.
However, current trends in privacy make transparent ”glass

box” solutions mandatory.
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If you ask me now what the most interesting topics towards

reaching context adaptivity are, I would recommend three

major directions:

1) Multi-Task Learning to help to reduce catastrophic for-

getting 2) Transfer learning, which is is not easy: learning to

perform a task by exploiting knowledge acquired when solving

previous tasks: A solution to this problem would have major

impact to AI research generally and ML specifically! 3) Multi-

Agent Hybrid Systems making use of collective intelligence

and crowd-sourcing by integrating a human-in-the-loop, and

fostering client side machine learning (federated learning) to

ensure privacy, data protection, safety and security.

I would like to close this talk with a citation attributed to

Albert Einstein (which surely is not from Albert Einstein):

”Computers are incredibly fast, accurate and stupid, humans

are incredibly slow, inaccurate and brilliant, together they are

powerful beyond imagination.”

Thank you very much!
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