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Abstract. Enormous advances in the domain of statistical machine
learning, the availability of large amounts of training data, and increasing
computing power have made Artificial Intelligence (AI) very successful.
For certain tasks, algorithms can even achieve performance beyond the
human level. Unfortunately, the most powerful methods suffer from the
fact that it is difficult to explain why a certain result was achieved on the
one hand, and that they lack robustness on the other. Our most pow-
erful machine learning models are very sensitive to even small changes.
Perturbations in the input data can have a dramatic impact on the out-
put and lead to entirely different results. This is of great importance
in virtually all critical domains where we suffer from low data quality,
i.e. we do not have the expected i.i.d. data. Therefore, the use of AI in
domains that impact human life (agriculture, climate, health, ...) has led
to an increased demand for trustworthy AI. Explainability is now even
mandatory due to regulatory requirements in sensitive domains such as
medicine, which requires traceability, transparency and interpretability
capabilities. One possible step to make AI more robust is to combine
statistical learning with knowledge representations. For certain tasks, it
can be advantageous to use a human in the loop. A human expert can
- sometimes, of course not always - bring experience, domain knowledge
and conceptual understanding to the AI pipeline. Such approaches are
not only a solution from a legal point of view, but in many application
areas the “why” is often more important than a pure classification result.
Consequently, both explainability and robustness can promote reliability
and trust and ensure that humans remain in control, thus complementing
human intelligence with artificial intelligence.
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1 Success in Machine Learning Enabled a New AI Spring

At the interface between politics, industry and consumers, artificial intelligence is
experiencing unprecedented popularity. Politicians around the world are declar-
ing AI a strategic goal, industry sees it as a huge growth engine, and many
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application areas that impact human life (e.g. agriculture, climate, health, ...)
see it as a great opportunity for multiple improvements in predictive modelling
[4], diagnostics [39] and therapy [9].

For example, in July 2017, China’s State Council published the country’s
artificial intelligence (AI) development strategy, titled “New Generation Artifi-
cial Intelligence Development Plan”, with the goal of becoming a world leader in
AI by 2030 [41]. Many other countries followed, e.g. in 2018 the German Federal
Government with “AI made in Germany 2030”1.

This recent AI spring was triggered by three main drivers: 1) the worldwide
trend towards digitization, and thereby the 2) availability of big data, and above
all 3) the remarkable advances in statistical machine learning and computational
power.

The spread of AI solutions is accelerated by current events, a very recent
example is the health domain: The potential for medical AI-based systems in
the near future has increased enormously after the sad 200 million COVID-19
cases and 4 million deaths worldwide (as of 6 August 2021)2. To give another
very recent example: A graph-based machine learning method enables the iden-
tification of bioactive anti-COVID-19 molecules in foods based on their ability to
target the SARS-CoV-2 host gene (protein-protein) interactome. Based on this
work, a “food map” was created that estimates the theoretical anti-COVID-19
potential of each ingredient based on the diversity and relative content of antivi-
rally active candidates. Such approaches will play an important role in future
clinical trials of precise nutritional interventions against COVID-19 and other
viral diseases [32].

Indeed, the increased availability of data has reignited interest in AI algo-
rithms for the medical domain, especially convolutional neural networks in image
analysis and specifically in radiology and pathology. However, in order to use AI
to solve problems in medicine and life sciences beyond the laboratory and rou-
tine, there is an urgent need to go beyond simple benchmarking and improve
the performance of methods that only work with independent and identically
distributed (i.i.d.) data. Independently and identically distributed random vari-
ables have the same distribution and do not affect each other - however, this is
rarely the case with real data. Machine learning is learning from observed data
by constructing stochastic models that can be used to make predictions and
decisions. It sounds simple, but when do we have i.i.d. in reality, real-world data
is highly non-linear, non-stationary and high-dimensional and often noisy. Data
quality is therefore a basic requirement for the correct functioning of our data-
driven algorithms. This often requires great efforts of data pre-processing, data
cleansing, because malfunctions due to “dirty data” can have dramatic effects.
However, this data cleaning can also have a negative impact on data quality,
especially if not done carefully [48].

1 https://www.ki-strategie-deutschland.de.
2 https://www.worldometers.info/coronavirus/, accessed 6 August 2021.
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Unfortunately, even the best current machine learning models do not gen-
eralize well, have difficulty with small training datasets (“little data”) and are
sensitive to even small perturbations as we will see later on.

Above all, the most successful approaches are so complex, so nonlinear, and
so high-dimensional that they are difficult or impossible for human experts to
interpret and, above all, can no longer derive causal relationships. Robustness
and explainability have therefore been declared by the European Union to be
definitely the most important properties for future trustworthy AI [17].

In this paper, we first define the terms trust and trustworthy AI, then explain
what explainability and causability are and why this is important, briefly look
at robustness, and conclude with how a human-in-the-loop can contribute to
robustness and explainability.

2 Trust and Trustworthy AI

Before we dive into our topic, we need some definitions so that we can develop
a common understanding of the terms used. Incidentally, this is also a good
example of the quality of explanations and the question of when an explanation
is good, which we will discuss in more detail later under the terminus Causability.
As Jean Piaget (1896–1980) advocated in his tradition of human-centered and
trans-disciplinary science, we first need a common framework to enable mutual
understanding (see e.g. [37,38]).

2.1 What Is Trust?

Trust is a multidisciplinary concept that is very difficult to define [8], similarly
as human intelligence [5], and this is why AI is also very difficult to define. The
most common definition of intelligence is given by cognitive science as mental
capability, and includes, among others, the ability to think abstract, to reason,
and to solve problems from the real world. A hot topic in current AI/machine
learning research is to find out whether and to what extent algorithms are able
to learn such abstract thinking and reasoning similarly as humans can do - or
whether the learning outcome remains on purely statistical correlation [22].

The concept of trust is also linked to several disciplines and influenced by
many diverse factors. It can be understood better when we consider that trust
has evolved genealogically from some fundamental features of human social life
with the aim that we can rely on other people to act cooperatively [47].

As a social psychological construct, trust is a belief or an assessment, i.e.
it is always subjective and dependent on personal attitudes and expectations.
Nevertheless, trust has some consistent characteristics: subjectivity, dynamism,
context awareness (risk situations, perceived domain importance, e.g. fields or
situations that impact human life), incomplete transitivity, time decay, asymme-
try and measurability. The basic factors include security, dependability, integrity,
predictability, and reliability [53].
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Trust evaluation is the process of quantifying trust with attributes that influ-
ence individual trust. A number of machine learning methods have even been
used for trust assessment [51].

It is obvious that trust is very important for Human-AI interaction because
trust is an attributional process and perceived trust is an important aspect of
developing and maintaining interpersonal relationships. Successful cooperation
between human communicators occurs when ambiguity and uncertainty in social
perceptions are reduced through the development of trust. In particular, it is
important to emphasise that the upcoming human-AI interaction represents a
new paradigm in which human communication is augmented or even generated
by an intelligent system. Here, trust develops differently than in classical early
human-computer interaction or in interactions between humans [18].

2.2 What Is Trustworthy AI?

Despite all the successes and the recurring euphoria about AI, recent work shows
that AI can unintentionally harm humans and that it is precisely the large-scale
and wide introduction of AI technologies that holds enormous and unimagined
potential for new types of unforeseen threats [26].

For example, AI can make unreliable decisions in safety-critical scenarios (e.g.
in the medical domain) or undermine fairness by inadvertently discriminating
against a group [16].

For this reason, the international research community has recently paid
much attention to so-called trustworthy AI. Dimensions of trustworthy AI
include: security, safety, privacy, non-discrimination, fairness, accountability
(re-traceability, replicability), auditability and environmental Well-being, and
most of all robustness and explainability [34]. These dimensions have also been
included into the European Commissions ethics guidelines for trustworthy AI3

[13,17]. For all these reasons, Trustworthy AI is a strongly emerging field in the
international research community [7].

3 Explainability and Causability

3.1 What Is Explainable AI?

Although explainable AI (xAI) only emerged through the DARPA initiative [15]
it is in principle not a new field. The problem of explainability is at least as old
as AI itself, in fact it is the result of AI itself. DARPA’s Explainable Artificial
Intelligence (XAI) program aimed to develop AI systems whose models and
decisions can be understood and trusted by end users. To this end, a large number
of diverse methods have been developed by the growing xAI community. While
also interpretable methods (aka ante-hoc methods) have been used, which are
also known as glass-box models (such as decision trees, or graph-based methods),

3 https://ec.europa.eu/commission/presscorner/detail/en/IP 19 1893, last accessed
on August, 31, 2021.
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the emphasis has been put by the community on the interpretation of so-called
black-box methods (see below). The holistic integrative approach of the DARPA
program is worth noting, as the realization of xAI has included not only methods
for learning more explanatory models, but also the design of effective explanatory
interfaces, as well as the psychological requirements for understanding effective
explanations. Meanwhile xAI is an established vibrating field [1,44].

3.2 What Is Explainability?

Explainability, in the sense of the machine learning community focuses mostly
on post-hoc methods, i.e. to make so-called “black-box” models explainable
by a human [31]. Such methods highlight technically decision-relevant parts of
machine representations and machine models, i.e., parts that contributed to
model accuracy during training or to a particular prediction. A typical exam-
ple of a method that does this very well is Layer Wise Relevance Propagation
(LRP) [33]. With this method, heat maps can be used to visualize the parts
that contributed to the given explanation. Graph Neural Networks (GNNs) are
an increasingly popular approach for predicting graph-structured data, however,
the input graphs are tightly entangled with the neural network structure, making
traditional xAI approaches inapplicable on such graphs. Therefore, “GNN-LRP”
[45] has already been further developed to provide explainability with graphs, or
trees, as well. These methods can be very helpful in the biology, medicine and the
life sciences, e.g. [24,25]. However, this “explainability” is a technical approach
and does not relate to a human model. However, in certain domains, especially
in the medical field, there is a need for causability, introduced by Holzinger et al.
(2019) [23].

3.3 What Is Causability?

Causability is the measurable extent to which an explanation - resulting from
an explainable AI method to a human expert achieves a specified level of causal
understanding. Causability refers to a human model and can be measured with
the System Causability Scale [21]. Causability is not a synonym for causality,
instead the term causa-bil-ity was introduced in reference to usa-bil-ity. Whilst
explainability (represented by the field of xAI) is about the technical implemen-
tation of transparency and traceability in AI approaches, causability is about
measuring and ensuring the quality of explanations.

So let’s briefly summarize: Explainability technically highlights decision rel-
evant parts of machine representations and machine models, i.e. parts that have
contributed to model accuracy in training or to a specific prediction for a given
observation. This is already an important step and this is where the xAI com-
munity has already developed a variety of successful methods. However, explain-
ability does not relate to a human model. Causability is the measurable extent
to which an explanation (resulting from explainability) achieves a certain level
of causal understanding for a human expert (or layperson, of course). Causal in
the sense of Judea Pearl as relationship between cause and effect [35].
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Why is this important? Because human understanding, especially checking
whether and to what extent something has been understood, can only be guar-
anteed if we can map Explainability with Causability. Consequently, successful
mapping between Explainability and Causability requires new human-AI inter-
faces that allow domain experts to interactively ask questions and counterfactu-
als to gain insight into the underlying explanatory factors of an outcome [20].

In an ideal world, statements originating from both “human intelligence”
and “artificial intelligence” would be identical and congruent with the “ground
truth,” which is that it must be defined equally for humans and AI. That this is
not easy and often does not work becomes quickly clear in the complex domain of
medicine: medicine is a good exemplar of real-world challenges: (i) ground truth
cannot always be precisely defined, especially for medical diagnoses; and (ii)
human (scientific) models are often based on causality in the sense of Judea Pearl
as the ultimate goal for understanding the underlying explanatory mechanisms.

While correlation is accepted as the basis for decisions in medical AI for
a long time [42], it can only be considered as an intermediate step for causal
considerations, which is relevant due to the importance of validity and necessary
to build human trust [6].

Currently, there is much debate in the xAI community about avoiding bias
and how to ensure fairness in AI decisions [30]. Bias is a core issue in causal-
ity, and causability is one possible measure of it. Validation of causal effects
under particular causal structures is especially necessary when such effects are
estimated in limited arrays. Randomized controlled trials are a good example.
Such studies allow causal hypotheses to be tested because randomization by
design is guaranteed, even with limited knowledge about the domain. A par-
ticular generalizability problem has been described by (Bareinboim & Pearl,
2013) [2], referred to as transportability, which can be viewed as a “data fusion
framework” for external validation of intervention models and counterfactual
queries. Transportability allows causal effects learned in experimental studies
to be transferred to a new setup in which only observational studies can be
conducted. Transportable models can be integrated into clinical guidelines to
augment subject matter experts with “actionable” predictions to achieve better
precision medicine [36].

The domain of artificial intelligence has tremendous potential to contribute
to a better understanding of disease, which can lead to more accurate diagnoses,
more rational disease prevention strategies, better treatment selection, and the
development of new therapies. In addition, a better understanding of disease can
contribute to the long-term goal of personalized precision medicine, which seeks
to redefine the understanding of disease development and progression, treatment
response, and health outcomes by measuring as precisely as possible the molec-
ular, genetic, environmental, and behavioral individual factors that contribute
to health and disease. Here, it is imperative that AI decisions be fully traceable
across all modalities involved so that the medical professional has the ability to
i) understand, ii) confirm, or iii) reject them. Whatever future human-AI inter-
faces look like, they must enable a domain expert to understand causal pathways
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in order to compute meaningful counterfactuals [28]. This is where the use of
graphs and learning graph representations can be beneficial [24].

4 Robustness

4.1 Robustness in General

Many machine learning models achieve amazing performance on standard i.i.d.
data. However when working with real data (e.g. from the medical domain) they
fail miserably, being perturbed very easily. Robustness is generally defined as
the property of a model to produce unperturbed results even if the input data
is perturbed [50].

For example, it has been observed that commonly occurring image corrup-
tions, such as random noise, contrast change, and blurring, can lead to significant
performance degradation. Consequently, improving distributional robustness is
an important step towards safely deploying models in complex, real-world set-
tings [54]. Robustness is a ubiquitously observed property of biological systems
and is considered a fundamental feature of complex evolvable systems. It is
achieved by several underlying principles that apply to biological organisms as
well as to sophisticated technical systems [29].

4.2 Robustness in Interventional Studies

Biomedical observational studies are affected by confounding and selection bias,
which makes causal inference to be unfeasible if robust assumptions are not
made. These require a priori domain knowledge, as data-driven prediction models
may be used for drawing causal effects, but neither their parameters nor their
predictions necessarily have a causal interpretation. The healthcare informatics
communities are recommended to employ causal approaches and learn causal
structures by using the linchpins to develop and test intervention models [40]:
1) target trials, 2) transportability, and 3) prediction invariance.

Target trials refer to algorithmic emulation of randomized studies. Trans-
portability is a license to “transfer causal effects learned in experimental studies
to a new population, in which only observational studies can be conducted.”
Akin to transportability is prediction invariance, where a “true causal model is
contained in all prediction models whose accuracy does not vary across different
settings”.

When a causal structure is available or a target trial design can be devised,
the evaluation of model transportability for a given set of action queries (e.g.,
treatment options or risk modifiers) is recommended; while for exploratory anal-
yses where causal structures are to be discovered, prediction invariance could be
used. In this way, as advocated by [40] transportability and prediction invariance
could become guideline core tools and part of reporting protocols for intervention
models, for a better alignment with the standards for prognostic and diagnostic
models of medicine and biomedical practice today.
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4.3 Robustness to Adversarial Attacks

Technically, we are talking about performance on unseen examples from the
underlying distribution, and the goal is to train models so that the expected loss
reaches a minimum:

E
(x,y)∼D

= [L(x, y; θ)] (1)

Szegedy et al. (2013) [49] made a fascinating discovery: several non-linear
machine learning models, including state-of-the-art neural networks, misclassify
well-known examples if they have been disturbed even slightly, e.g. with almost
invisible salt and pepper noise. For example, a pig’s face is suddenly classified as
an airliner, a panda becomes a gibbon, or a benign melanoma becomes malignant
(see picture) with extremely high confidence. Such total misclassifications can
have dramatic effects in many application areas and do not contribute at all to
trust building.

Several non-linear machine learning models, including state-of-the-art neural
networks, also misclassify well-known examples if they have been disturbed even
slightly, e.g. with almost invisible salt and pepper noise. The vehement however
was that the output is completely misclassified, for example a pig face is sud-
denly classified as an airliner (see picture). This may be funny, however it can
have dramatic effects in many application areas. For example, in medicine, such
misclassifications can lead to serious consequences.

However, many non-linear ML models, particularly deep learning ones, falsely
classify the so-called adversarial examples, i.e., inputs formed from small per-
turbations (e.g., salt-and-pepper noise) applied to training samples, which are
usually not even visible for a time-limited human [10]. This results into dramatic
effects, and completely wrong outputs with high confidence. A typical example
is shown in Fig. 1.

Fig. 1. Example of the susceptibility of our currently best performing deep learning
models: One of the maybe most prominent adversarial example, cf. with [12]. Per-
turbations of just a few pixels (“salt-and-pepper noise”) can dramatically change the
classification and turn a malign melanoma into benign and vice versa.
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Determining the appropriate Δ to use is a domain specific question, and
therefore a human-in-the-loop [19] can be of help because humans, even if they
also make mistakes, can be considered a robust proxy in decision making (see
next chapter).

In Fig. 1 the θ are the feature parameters, x is the the input to the model, y is
the targeted output function associated with x, and J(θ, x, y) is the cost function
(loss function) used to train the neural network. The cost function around the
current value of θ can be linearized, obtaining an optimal max-norm constrained
pertubation of

ε = sign(∇xJ(θ, x, y)) (2)

This is called “fast gradient sign method” of generating adversarial examples,
the required gradient can be computed using backpropagation. The sign(x) as
real sign function maps from R to a Bit and adds a sign to it. The Nabla Operator
denotes the vector representation of the differential operators (gradient, diver-
gence, rotation). The property to resist such disturbances is called robustness,
and achieving it can mean training models with low expected adversarial loss:

E
(x,y)∼D

= [max
δ∈Δ

L(x + δ, y; θ)]. (3)

5 How Can a Human-in-the-Loop Help?

When we compare human learning and problem solving with the capabilities
of our most advanced learning algorithms, some serious differences immediately
stand out: Supervised learning requires a lot of labelled data while model-free
reinforcement learning requires far too many trials. Humans, on the other hand,
are able to generalise quickly and surprisingly well even in complex situations
with little prior experience. Humans can generalise in a way that is different and
more powerful than ordinary i.i.d. generalisation, namely these can correctly
interpret novel combinations of existing concepts even when these combinations
are extremely unlikely under training distribution, at least as long as they take
into account higher-level syntactic and semantic patterns that have already been
learned [46]. Humans are often very robust to change and can adapt quickly
to change even with little training. Current Deep Learning is most successful
in perceptual tasks and, more generally, in the previously mentioned System
1 tasks. The use of Deep Learning for System 2 tasks that require a deliberate
sequence of steps is still in its infancy [3]. Humans are also very adept at inferring
new causal relationships from even a few observations. Prior knowledge about
the probability of occurrence of causal relationships of different kinds and the
nature of the mechanisms linking causes and effects plays a crucial role in these
inferences [14].

Let’s stay again with an example from network medicine. Interactions of
human experts on graphs clearly need to be based on the low-dimensional input
features to efficiently discover, reject, or confirm causal links between biomedical
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modalities. Once these connections are computed and the structure of the input
graphs is updated accordingly, methods for explainable GNN can be applied
[52,55]. Human domain knowledge in the loop thereby enhances the model build-
ing process. Furthermore, human interactions can be realized here by “what-if”
queries (counterfactuals) to the system, leading to a graph of counterfactuals in
which features are defined as nodes and edges refer to combinations of features.
Such a counterfactual graph can be generated in a purely data-driven manner:
Given a test set that includes a sufficient number of samples, an algorithm tra-
verses the feature space and exchanges feature values between nearest neighbors
of a different class of results until the class of the instance itself changes. The
nearest neighbor-based sampling leads to counterexamples of realistic patient
profiles and is thus based on plausible counterfactuals. Of course, providing such
counterfactuals, roughly based on the internals of a model, is not yet sufficient
for explainability. The plausibility of the counterfactual change is therefore a
must, i.e., the “counterfactual path” leading to the label change should have a
real chance of occurring in practice for the counterfactual to be realistic. In this
regard, recent attempts to find plausible counterfactuals for image classification
should be extended to models for graph data. The sampled feature path leading
to the class change is stored and forms a contrafactual decision path. Repeating
this procedure results in a graph consisting of multiple decision paths that can be
used as a communication channel back to the black box model. Recent work has
shown how a DF can be efficiently reduced to a single decision tree [11,43], from
which counterfactuals can be easily observed by the leaf nodes, so that it could
be used as a model for global explanations. In such an approach, the human-
in-the-loop will be able to study this consensus decision tree and thus adopt
the changes to the counterfactual graph. Studying the impact of modifications
to the counterfactual graph on the decision trees can facilitate the definition of
symbolic rules to revise the internal structure of the input graph. Possible mod-
ifications include adding or deleting semantic links between modalities, however
also adjusting their edge weights (reference) [24,36].

To implement such robust, explainable and thus trustworthy AI applications,
we need an iterative, agile and human-centred AI design process. These processes
have long been known in traditional software engineering as agile user-centred
design methods [27] and now need to be taken to the next level of future AI
engineers.

6 Conclusion

Explainability offers the great opportunity not only to meet the legal requirement
for transparency and traceability of “black boxes”, but also to promote trust in
AI and, above all, to foster a deeper understanding of previously unknown con-
nections - in other words, to contribute to the discovery of knowledge. Just
think of the enormous support that doctors can draw from the combination of
human intelligence and AI (e.g. in diagnosis): Humans show very good intu-
ition in low-dimensional problems, can generalise amazingly well from a small
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amount of data, and recognise connections thanks to their everyday intelligence.
For example, doctors can apply AI to “interesting” data and interrogate it inter-
actively. Conversely, machine-generated results can be reconstructed from high-
dimensional data spaces that no human could ever have found and checked for
plausibility. The most important contribution of explainability is to clarify what
is cause and what is effect in order to avoid falsely including artefacts and sur-
rogates. This is desirable in many application domains and even mandatory in
safety-critical domains.

The major challenges of our field for the future is to merge the two AI
approaches, e.g. logic-based ontologies with probabilistic machine learning with
one (or more or even many) humans in the loop into a hybrid multi-agent inter-
action model, used as a kind of “power steering for the brain”. This would
not only mean an extension (augmentation) of human intelligence by machine
intelligence, but also, conversely, an extension of artificial intelligence by human
intuition and thus an important contribution to making algorithms more robust.
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